Benchmarking and Equity Premium (Welch, Chapter 09)

Ivo Welch

Mon Jun 20 21:53:17 2022

Maintained Assumptions

Perfect Markets

- 1. No differences in opinion.
- 2. No taxes.
- 3. No transaction costs.
- 4. No big sellers/buyers—infinitely many clones that can buy or sell.

With risk and risk aversion

this chapter does not lean heavily on assumptions.

Corporate Key Question

What is your investors' cost of capital?

- We need the opportunity cost of capital
 - ightharpoonup to serve as the E(r) in the PV formula.

Prerequisite Objective

- As a corporate manager, your task is to act on behalf of your investors.
- Are you the custodian of your owners' cash.
 - ► If not, who do you serve?

- ► To compute NPV, what is your investors' opportunity cost of capital?
 - ► Return their money if they can do better elsewhere!

Skype Your Investors and Ask?

- ► In public companies, there are often too many investors
 - different and diffuse.
 - Most have little investment in your company.
 - Most don't want to become informed.
 - Most just don't want to be bothered.
 - Often hard to even get them to vote on-line.

Reasonable Presumptions?

- What are good presumptions about them?
 - ► They are smart.
 - They are reasonably diversified most holding something close to the overall stock market.
 - ► They want you to compare your projects to others that they could invest in elsewhere.

Preferences?

- What (project characteristics) do they like?
 - Do they care about your firm?
 - Do they care about you?
 - Do they care about employees?
 - Do they care about society?
 - Do they care about abortion? (which side?)
 - Do they care about politics?
 - Do they care about pollution?

Specific Preferences?

- ▶ Not 100% clear what investors (dis-)like.
- ► Most likely, we think they care about:
 - When will the payment come?
 - Is the project and payment risky or safe?
 - ► Is the market perfect? Is it liquid? Can they sell easily? Can they withdraw easily? How bad are their taxes?

Risk or Co-Risk?

- ► Do they care about how your project investment choices impact their overall portfolio?
 - ► If so, then how should you assess how a new project contributes to their portfolios?

Specific Term and Risk Preferences

What are good benchmarks for your project's term and risk premia?

- When will the payments come?
 - ► → Treasury Yield Curve
- Is your project "default-risky" like corporate equity?
 - ► → Equity Premium

Equity Premium

$$\mathsf{EQP} \equiv E(r_{\mathsf{M}}) - r_{\mathsf{F}}.$$

- ► The **equity premium** (or market risk premium):
 - ► the difference between the *expected* RoR on the stock market and some risk-free RoR.
 - View it as a normalized way of quoting the expected RoR on the stock market.

Risk-Free vs Risky Components

- ► Use leverage to split your (intermediate-risk) project into one project that is safer and one that is less safe.
- ► Then benchmark your safer and riskier components separately.
- Stocks pay off in the distant future.
- Bonds pay off in the future.
- ▶ Bills pay off soon.

Perhaps Better: A Corp Yield Curve?

- Should we compare our corporate projects to U.S. Treasuries??
- Maybe look at an equivalent corporate-bond yield curve instead of Treasury yield curve?
 - ▶ But take out the default premium. Do not work with quoted numbers.
 - Your investors will not earn default premium on average.
 - Probably expected corp bond RoR is not super-greatly higher than that of U.S. Treasuries.

Equity vs Risk-free?

Are there non-corporate contexts in which you care about the difference between the equity expected rate of return and the risk-free rate?

Good Project Benchmark?

- ▶ Where do you read off the risk-free rate?
- What is it today?
- Where do you read off the equity premium?
- What is it today?

Graph: Textbook Authors

Comparability

- Benchmark returns (such as the equity premium) also depend on how you quote them.
 - Do investors care more about geometric or arithmetic rates of return?
 - Are cost-of-capital estimates more important for long-term projects or short-term projects?
 - ▶ **Watch out**: get E(CF) in the PV numerator right! Do not apply E(R) to *promised* cash flows.

M1: Historical Geometric Averages

Standing today, looking backwards for x years, how did stocks perform geometrically above bonds (and bills and inflation)?

- ► Is there a term premium for equity?
 - A: Not clear.

Graph: Historical Geometric RoRs

Reconciling Historical Equity Premia

- ▶ Arithmetic Equity Premium vs Short-Term Bonds **1926** to **2020**: $\approx 8.6\%$
- ► Minus Later Sample Period, starting **1970**: -1%
- Minus Long-Term T-Bonds Instead of Short-Term T-Bills: -4%
- ► Minus Use of Geometric Return: -1%

- ► Highest quotable historical equity premium: 8.6%
- ► Lowest quotable historical equity premium: 2.4%
- All numbers are consistent. Just different.
 - ► Historical, not necessarily expected.

Peso Problem (Black Swans / Tail Events)

Question: What about rare shocks??

- Peso Problem (Academics), or
- Black Swan (Nassim Taleb).

(important in academia and practice!)

Peso Answer

- Peso problem can explain at most 1-2% of historical equity premium.
- Peso problem is not unimportant, but it was and is insurable with index options.
- ► The remaining risk (long-run unforeseen stagnation) is harder to insure.

M2: History Implication?

Are high historical stock market returns indicative of higher or lower future stock market returns?

M3: Predicting EQP?

- Would high or low dividend yields predict higher future market RoRs? Theoretically? Practically? Today?
 - Theoretically, higher.
 - But not (strongly) according to empirical evidence.
 - Recently, D/P predicted negative equity premia!

M4: Equity Premium

- What equity premium would it take to attract investors into the stock market, assuming no gifted horses?
 - ▶ 1-2% per annum would seem reasonable.
 - ➤ 3% means ending up with twice as much money for an investment over 25 years. This seems ridiculously high.

M5: Couldn't We Just Ask Experts?

- ► It is *The blind leading the blind*.
- Where do you think they got their opinions from?

Big Survey of Educated Guesses

- ► PS: you need to adjust how different answers have quoted the equity premium.
 - Ordinary investors. Tend to follow recent experience.
 15%/year in 2000, maybe also in 2021.
 - ► McKinsey Corporate Consulting. 5%
 - ► Social Security Admin. 4%
 - CalPers 5% (7% for stock market)
 - ► Professors of Finance. 4% to 5.5%
 - Me? Ivo-san. 2%.
 - ▶ I have been badly wrong (too pessimistic) from 2014 to 2021!

CalPERS: Shrugworthy?

- ► CalPERS has to decide what their expected (geometric) RoR should be.
 - ▶ they used a geo market premium of 7% in 2019.
 - which was then 5% above prevailing Treasury bond!
 - ▶ If this seems unrealistic to you—to me, too.
 - ▶ But lowering this estimate meant California would have had to set aside money for unfunded pension obligations *today*.
 - ▶ Politicians prefer to leave optimistic estimates as is, and kick the can down the line to their successors.

CalPERS: Problem Dimension

- ▶ 0.25%/year difference on \$300 billion:
- \triangleright ≈ \$750 million.

- Can pay for a lot of political projects
 - ...and hordes of equity-premium consultants!
 - me, me, me, me ...

Time Variation?

- Many individuals give equity premium forecasts which depend on the forecasting interval.
 - ▶ like a belief that market is over- or under-valued, and they can predict the market.
- Expected value forecasts should not change dramatically from year to year.
 - based on technology, competition, preferences.
 - ▶ P should adjust rapidly, but *not* E(R)!

M6: ROR/ICC

Accounting Models (RoR) and/or ICC.

Time-Dependence

- ► Everyone agrees/knows that the SD(R) is much higher than the E(R) for market and most other equity.
 - SD(R) on the order of 15% to 20% per annum.
 - But which mean equity premium E(R) is right?
 - ► 1%? 3%? 6%? (per annum)

▶ Be reasonable. Be consistent. Pray.

Combining Assets and Claims

- ► The following are very general aspects.
 - They will also hold in the next chapter with more specific models.

Firm Is "Debt Plus Equity"

- ► The profits generated by the firm's assets are distributed to its debt and equity holders.
- You can think of a firm's assets as consisting of a portfolio of debt and equity.
 - ▶ DT: dollar value of the firm's debt.
 - EQ: dollar value of the firm's equity.
 - ► FM: dollar value of the firm's total assets.
 - ► PS: simplification, this omits non-financial liabilities, which here were rolled into financial debt.

 $w_{FM} = w_{FO} + w_{DT} = 1$

 $r_{FM} = w_{DT} \cdot r_{DT} + w_{FO} \cdot r_{FO}$

$$FM \equiv DT + EQ$$

$$w_{DT} = \left(\frac{DT}{DT + EQ}\right)$$
, $w_{EQ} = \left(\frac{EQ}{DT + EQ}\right)$

Linear Functions

ightharpoonup A linear function f() means

$$f(a+b) = f(a) + f(b) .$$

- For us, the following is important:
 - ▶ Portfolios are linear combinations: $r_P = w_A \cdot r_A + w_B \cdot r_B$
 - Firms consist of debt and equity FM = DT + EQ.
 - ► (Firms are linear combinations of non-linear contracts.)
 - **Expectations** are linear functions: $E(r_A) + E(r_B) = E(r_{A+B})$.
- ▶ Variance and standard deviation are not linear.

Asset Debt Costs of Capital

Fortunately, firms care about (luckily easier-to-assess) asset cost of capital, not just the equity cost of capital.

$$E(R_{FM}) = w_{DT} \cdot E(R_{DT}) + w_{EQ} \cdot E(R_{EQ})$$

- ▶ If not too highly levered, well-collateralized, safe corporate debt should have E(R) only modestly above the US Treasury or other corporate debt.
- ▶ Of course, $E(R_{DT})$ must be *expected* yield, not *quoted*.

- Firms can value-weight their debt and equity cost of capital. So, if...
 - cost of capital of similar **Debt**: 5% (perhaps 6% quoted),
 - cost of capital of similar Equity: 10%,
 - ▶ and their project is 80% debt and 20% equity,
 - ▶ then their cost of capital is \approx 6%.

$$E(R) \approx 80\% \cdot 5\% + 20\% \cdot 10\% = 6\%.$$

See also NPV Applications

- You can average costs of capital,
- but you cannot assume that one applies to the other.
 - especially important in acquisitions and vastly different projects!
 - ► E.g., investing in a US Treasury bond requires a different cost of capital than investing in an equity option.

Pricing a Condo?

► If you want to price a condominium, which risk-free rate and equity premium should you use?

Common Sense

- Don't be stupid!
- ► First use common sense (appropriate tools), not formulas (hammers)!

- ► To price a condo, use other condos and not the stock market.
- If many other Xs have been bought and sold (at arms) length), in a highly-liquid market, then Xs are better
- henchmarks

Find the best benchmarks!